If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16000+50x+0.2x^2=100000
We move all terms to the left:
16000+50x+0.2x^2-(100000)=0
We add all the numbers together, and all the variables
0.2x^2+50x-84000=0
a = 0.2; b = 50; c = -84000;
Δ = b2-4ac
Δ = 502-4·0.2·(-84000)
Δ = 69700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{69700}=\sqrt{100*697}=\sqrt{100}*\sqrt{697}=10\sqrt{697}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{697}}{2*0.2}=\frac{-50-10\sqrt{697}}{0.4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{697}}{2*0.2}=\frac{-50+10\sqrt{697}}{0.4} $
| 2e=6.8 | | 1=n-2+1 | | 160000+50x+0,2x^2=100000 | | 2(3x-1)-3(2x-1)=1 | | 6b2+4b–2=0 | | 9(x+2)=9x+2 | | 266x=244 | | (2k-9)(k+2)=0 | | 120-4p=92 | | -7x+5(3x)=64 | | 7y+2/5=6y-5=11 | | (e+5)⋅4=28 | | (e+5)⋅4=28(e+5)⋅4=28 | | 5(x-6)-5=1x+3+4x | | 5x−2.5+6x−3=¯¯¯¯(2x−1) | | n/12+10=143 | | 8v-4=12v-8 | | y/11-5=-1=44 | | 12a-8=16a-16 | | 2x+4.5x-22.8=120.2 | | 23=u/4+9 | | 3^x^2=3^25 | | (4x)(2x+6)=90 | | 4a-13=6a-57 | | G(x)=(-5-1)(2x+8) | | 4n-5=10n+13 | | 1/5x-23=41 | | 3|2y-1-7=5 | | 2=-3t^2+24t+36 | | 3x=4*6 | | 16u-44=15u-36 | | 2/3(4x+2)−2x=5(2x−4)+6 |